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We have reported the syntheses of the n = 1' and 22 members 
of a homologous series of pyramidalized alkenes (I),3 their 
spectroscopic study in matrix isolation,4-5 and some of their 
chemistry.6 The generation of a benzo derivative of 1, n = 2,7 

and a bis-ethano derivative of the n = 0 member of this series 
have also been described.11 In this communication we report the 
synthesis and some spectroscopy of 1, n = 3. 
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Scheme I" 

Previous attempts to prepare diol 2, a promising precursor of 
\,n = 3, have been unsuccessful. Doubleringexpansionofbicyclc-
[3.2.2]nonane-6,8-dione,9 followed by transannular reductive ring 
closure,10 failed when the ring expansion proceeded with the 
undesired regiochemistry.1' Efforts to prepare 2 from diiodide 
3 by a ring closure, analogous to the one that proved successful 
in the synthesis of the 10-selena derivative of l,n = 3,l2 foundered 
when both dithiane and malonate ester monoadducts of 3 failed 
to undergo cyclization under a wide variety of conditions.13 

A third route to 2, which incorporates features of the two 
unsuccessful pathways, has resulted in its synthesis.14 As shown 
in Scheme I, we have formally inserted a methylene group between 
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the two carboxylic carbons of diacid 412 by performing an acyloin 
ring closure on dimethyl ester 5, reductively removing15 the 
hydroxyl group from 7, and then ring expanding16 ketone 9. As 
in Leonard's synthesis of tricyclo[3.3.3]undecane (manxane)," 
the regiochemistry of the ring expansion step is irrelevant, since 
12a and 12b both undergo Wolf-Kishner reduction to 13. 
Hydrolysis of 13 affords diol 2 in 9.6% overall yield from 4. 

Diol 2 was converted to dimesylate 14, which was reduced to 
1, n = 3, using either sodium naphthalide12J 8 or, more conveniently, 
sodium amalgam in ether. The latter method allows ether 
solutions of pure olefin to be obtained simply by filtering the 
reaction mixture. Unlike its lower homologues,1 8 1, n = 3, is 
stable to dimerization at room temperature; but it reacts very 
rapidly with atmospheric oxygen.19 

Careful exclusion of air from samples of the olefin allowed it 
to be characterized spectroscopically. A very weak band was 
observed in the IR at 1615 cm ', which corresponds to the strongest 
band in the Raman spectrum and is assigned to the C = C stretch 
in the olefin. An RHF/3-2IG20 vibrational analysis21 gives a 
frequency of 1851 cm-1 for this mode. After scaling by 0.873,22 

in order to account for the effects of anharmonicity and electron 
correlation,24 the C = C stretching frequency in 1, n = 3, is 
predicted to occur at 1615 cm-1. 

The C = C stretching frequency found in 1, n • 3, is 10 cm ' 
lower than that in its 10-selena analog.12 The lower C = C 
stretching frequency in and greater reactivity toward O2 of the 
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hydrocarbon is consistent with the fact that the doubly bonded 
carbon atoms in it are calculated to have larger pyramidalization 
angles (<t> = 25.0° and 25.20)25 than those found in a salt of the 
selenium analog.12 

Both the 1H and' 3C NMR spectra of 1, n = 3, are temperature 
dependent. The identity of the protons and carbons whose 
resonances broaden and coalesce indicates that the dynamic 
process responsible for these spectral changes is flipping of the 
trimethylene bridge. From the frequency separations at low 
temperatures and the temperatures, TQ, at which coalescence was 
observed in the resonances for the exo and endo allylic protons 
and the allylic and olefinic carbons, values of AG* = 14.6 - 15.0 
± 0.2 kcal/mol for bridge flipping were obtained at Tc = 304-
328 ± 3 K.26 In very good agreement with these NMR results, 
MM2 calculations27 predict that trimethylene bridge flipping 
should require 14.4 kcal/mol. 

The average chemical shift of 5 157.28 for the olefinic carbons 
in 1, n = 3, is larger than that of S 150.74 in the 10-selena 
derivative12 and that of 5 146.028 in bicyclo[3.3.0]oct-l(5)-ene 
(BCO),29 the unbridged reference olefin. The monotonic change 
in these 13C chemical shifts with increasing pyramidalization 
indicates that pyramidalization shifts the resonances for olefinic 
carbons to lower fields.30 

Olefin 1, n = 3, exhibits a UV absorption with Xmax = 217 ± 
5 nm in pentane. The more highly pyramidalized olefin, 1, n = 
2, has a UV absorption at even longer wavelength, Xmax = 245 
± 15 nm.5 In contrast, BCO does not show a UV maximum 
above 200 nm in solution. We find the maximum for the ir —* 
ir* singlet excitation in the electron energy loss (EEL) spectrum 
of BCO to be at 6.54 eV, which is close to the 6.61 eV reported 
for tetramethylethylene (TME)31 and corresponds to a wavelength 
of 190 nm. 

The experimental finding of a red shift in Xmax with increasing 
olefin pyramidalization is consistent with the results of ab initio 
calculations.2532 However, the calculations also predict that 
lowering the energy of the LUMO, rather than raising that of 
the HOMO, plays the dominant role in decreasing the HOMO-
LUMO energy separation.33 For example, RHF/3-21G calcu
lations on 1, n = 3, find that the HOMO energy is 0.25 eV higher 
than that of BCO; whereas the LUMO energy of 1, n = 3, is 
computed to be 0.79 eV lower than that of BCO.25 The predicted 
changes in the HOMO and LUMO energies appear to be rather 
insensitive to the basis set used.34 

HOMO and LUMO energies can be related, respectively, to 
ionization energies (IEs) and electron affinities (EAs) via 
Koopmans' theorem.35 We have used photoelectron (PE)36 

spectroscopy to measure the IEs of 1, n = 3, and BCO and 
employed electron transmission (ET)37 spectroscopy to measure 
their EAs. These spectra'4 confirm the prediction that the effect 
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of pyramidalization on lowering the energy of the LUMO is much 
greater than its effect on raising the energy of the HOMO.38 

The PE spectrum of BCO gives an adiabatic IE of 8.11 eV, 
which is close to that of 8.27 eV reported for TME.41 The adiabatic 
IE of 1, n = 3, is 7.80 eV, which is lower than that of BCO by 
0.31 eV. This difference between the measured IEs is in very 
good agreement with the difference between the calculated 
HOMO energies.253442 

The ET spectrum of BCO gives a vertical EA of -2.44 eV, 
which again is close to the EA of -2.27 reported for TME.43 

However, the ET spectrum of 1, n = 3, gives an EA of-1.70 eV. 
The 0.74 eV greater electron affinity of 1, n = 3, is also in very 
good agreement with the difference between the calculated LUMO 
energies.2534 

This good agreement suggests that the calculations might also 
be able to predict which members of this series of pyramidalized 
olefins will form bound radical anions in the gas phase.44 After 
scaling the computed difference of 3.50 eV between the LUMO 
energies of BCO and 1, n = O,25 by the difference of 0.74 eV 
between the experimental EAs of BCO and 1, n = 3, divided by 
the difference of 0.79 eV between their calculated LUMO 
energies,25 our experimental value of EA = -2.44 eV for BCO 
indicates that 1, n = O, should have a vertical EA that is positive 
by 0.84 eV (0.26 eV if RHF/6-3 lG*//TCSCF/6-31G* LUMO 
energies34 are used). Therefore, this most highly pyramidalized 
(0 = 61.20)25 member of the homologous series of alkenes 1 is 
predicted to form a bound radical anion.46 The chemistry observed 
for a bis-ethano derivative of 1, n = 0,8 is consistent with the 
prediction of a LUMO of very low energy in this alkene. 
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